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Definitions and notations

A Lévy process X is specified by the triple (a, o2, II), where a € R,
o >0 and II(dz) satisfies [ min(1,2?)II(dz) < oc.

The Laplace exponent ¢(z) is defined as
E [e#¥] = ¢'¥*), Re(z) = 0.

The Lévy-Khintchine representation for ¥(z) is

P(z) = 5 +az+ / (e* =1 — zalyy<1y) I(dz).
R
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Definitions and notations

m We define the supremum X; = sup{X, : 0 < s <t} and
similarly for the infimum X,;

m e(q) denotes an exponential random variable (with mean 1/¢),
independent of X;

m Define S; = X(q) and I, = Xe(q)

m The Wiener-Hopf factors are defined as @7 (2) = E[exp(—25,)]
and ¢; (z) = Elexp(z1y)];
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Wiener-Hopf factorization

m X¢(g) — 9, is independent of S; and has the same distribution as
I

q-
- q
m = ¢q (*Z)ébq (2),
since q . x Stes
—_ ZXe(q) | — 2(Xe(q)—Sq)+25¢
iy =) el

m If we can factorize q/(q¢ — 1(z)) as a product of two functions
f*(2), such that f+(z) {resp. f~(z)} is analytic and zero-free in
the half-plane Re(z) > 0 {resp. Re(z) < 0}, (plus some growth
conditions) - then we can identify ¢7(2) = f(2).
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@ Carr, P. and Madan, D.,
Option pricing and the fast Fourier transform.
Quantitative Finance, 2(4):61-73, 1999.
m The basic building blocks for pricing various exotic options
(barrier/lookback/Asian/etc.) are the distributions of I, and S,
so we need explicit Wiener-Hopf factors.

@ Jeannin, M. and Pistorius, M.,
A transform approach to calculate prices and greeks of
barrier options driven by a class of Lévy processes.
Quantitative Finance, 10:629-644, 2010.
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Popular processes in mathematical finance

Variance Normal Generalized | Hyper-
Gamma Inverse Tempered exponential
(VGQ) Gaussian Stable
(NIG) (CGMY or
KoBol)
Activity Infinite Infinite Parameter Finite
dependent
Variation | Finite Infinite Parameter Finite
dependent
WHF No explicit | No explicit | No explicit | Rational
form form form function

E.g.: The Laplace exponent of the VG process:

1 2
P(2) = 2y + %ln (1 - %kz2 —9kz> .
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Completely monotone jumps

A function f(x) is called completely monotone if (—1)"f(™ (z) > 0 for
alz >0,n=0,1,2,....

A Lévy process has completely monotone jumps, if II(dz) is
absolutely continuous with density m(x), and m(x) and 7(—=x) are
completely monotone for z € (0, c0).

Theorem

The jump density of a process X is completely monotone if and only if
Sq and I, are miztures of exponentials.

@ L.C.G. Rogers.
Wiener-Hopf factorization of diffusions and Lévy processes.
Proc. London Math. Soc., 47(3):177-191, 1983.
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Hyperexponential processes

m The density of the Lévy measure is

N N
m(z) = H{m>0} Z a;pie” Pt + ]I{x<0} Z diﬁieﬁiw7
=1 i=1

where all the coefficients are positive.

m The Laplace exponent is a rational function

o? Y al a;
P(z)= =22+ pz+2 Lz —
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Hyperexponential processes

Assume o > 0.

m The Wiener-Hopf factors are given by

z

N A
‘ H L
q

C7+1

N1+
o5(2) == 115

Cl i=1 1+ C1+1

where ¢; and (; are the (real) solutions to ¢(z) = ¢.

m The distribution of S, is a mixture of exponentials

d N+1
— e GiT
de(S <z)= ; cigie

where ¢; > 0 and ) ¢; = 1, and similarly for I,.
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Summary

m Processes with hyper-exponential jumps are great to work with,
but...

m we have a problem: we can’t have jumps of infinite
activity /infinite variation.

m The other processes are completely montone and have infinite
activity, but we do not have closed form expressions for the
Wiener-Hopf factors.

m How do we approximate a general Lévy process with
completely monotone jumps by a hyperexponential
process?
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Main idea

m Approximating a Lévy process is equivalent to approximating its
Laplace exponent 1(z).

m The Laplace exponent of a hyperexponential process is a rational
function.

m Thus we have two problems:
(1) Approximate t(z) by a rational function 1(z),
(2) Show that TZJ(Z) is itself a Laplace exponent of a Lévy process.

Daniel Hackmann 10/31
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Padé approximation

Let f be a function with a power series representation
f(z) =302, ¢iz". If there exist polynomials P,,(z) and Q,(z)
satisfying deg(P) < m, deg(Q) < n, Q,(0) =1 and

P (2)

then we say that f[™/"](2) := P,,(2)/Qn(2) is the [m/n] Padé
approximant of f.

=cotciz+ - Feminz2™T+ 0™, 250,

Daniel Hackmann 11/31
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A simple example of Padé approximations

m
\ 0 il 2 3
n
1 1 1
0 = —
1 = 1—z+ 122
. 142 1432 1+3z
i 1-42 1- 224422 :
. Iy 14324322 1+3iz+ 422 14224172
1 1-1z 1—3z+ 422 1— 32+ %22 — &28
s l+z+32+47 13z 41224 128 14324 2224 128 1+ iz 4 522+ o2
1 1-4%2 =iz n g 1—jz+ 427 — 2°
itz 12 + Lt Ltz + 522+ &85+ 2t 1+ 32+ 122 + 528 4 gp2? T+ dz + 122 + 28 + g2t
1 1-1z 1— 32+ 422 1—dz 4 £22 — 528

Figure: The initial part of the Padé table for e*
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Gaussian quadrature

m v is a finite positive measure on a closed bounded interval [a, ]

m For each n we want to find a measure 7, on a finite number of
points in [a,b] such that we match the first 2n — 1 moments of v,
ie.

n
/ xju(da:):fowi, Jforj=1,...,2n—1.
[a,b] i

Daniel Hackmann 13/31



Theoretical results
0O00@00000000

Gaussian quadrature

m v is a finite positive measure on a closed bounded interval [a, ]

m For each n we want to find a measure 7, on a finite number of
points in [a,b] such that we match the first 2n — 1 moments of v,
ie.

n
/ xju(da:):fowi, Jforj=1,...,2n—1.
[a,b] i

m The points z; and w; are the nodes and weights of the Gaussian
quadrature.
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Gaussian quadrature and orthogonal polynomials

m {p,(2)}n>0 be the sequence of orthogonal polynomials with
respect to the measure v(dz): deg(p,) = n and

(pnapm)u = /[ . pn(x)pm(x)’/(dx) = dn(sn,m
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Gaussian quadrature and orthogonal polynomials

m {p,(2)}n>0 be the sequence of orthogonal polynomials with
respect to the measure v(dz): deg(p,) = n and

(pnapm)u = /[ . pn(x)pm(x)’/(dx) = dn(sn,m

m The nodes of the Gaussian quadrature 7,, are the zeros of p,, and
the weights may be calculated from p,_1, py.

@ G Szego.
Orthogonal Polynomials.
Amer. Math. Soc., Providence, RI, 4 edition, 1975.
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Main theorem (two-sided case)

Assumption: The Lévy measure II(dx) is absolutely continuous, and
its density m(x) is completely monotone and decreases exponentially
fast as © — +o0.

Using Bernstein’s theorem, we see that there exists a positive measure
i, with support in R\{0}, such that for all z € R

S /( ) + /( . ()
0,00 —00,0

We denote
p (A =pu({veR : vt e A}).

Then |v|?p*(dv) is a finite measure, with bounded support.

Daniel Hackmann 15/31



Theoretical results
O00000e00000

Main theorem (two-sided case)

Assume that ¢ = 0. Let {z;}1<i<n and {w;}1<i<n be the nodes and
the weights of the Gaussian quadrature of order n with respect to the
measure |[v[3u*(dv). We define

Wi

P (2) == az + 2° Zn:

1—z2z;
i=1 v

Theorem
(i) The function 1, (z) is the [n + 1/n] Padé approzimant of 1(z).

(ii) The function ¥, (2) is the Laplace exponent of a hyperexponential
process X having the characteristic triple (a, U?l,ﬂn)hzm, where

Daniel Hackmann 16/31
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Main theorem (two-sided case)

Theorem

(i)

g wi|zy| e it <0,
e (x) o 1<i<n : ;<0
n A _ = .
g wixy e v, if x> 0.

1<i<n : z;>0

(iii) The random variables X{") and X, satisfy E[(Xl(n))j] = E[(X1)7]
for1<j<2n-+1.

Daniel Hackmann 17/31
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Convergence

Theorem

For any compact set A C C\ {(—o0, —p| U [p,00)} there exist
c1 =c1(A) >0 and ca = ca(A) > 0 such that for all z € A and all

n>1

[¥n(2) = P(2)] < cre™=™.

Daniel Hackmann 18/31
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One-sided processes

m For CM subordinators, all three functions 1™/"(z), +1/7](z),
" +2/71(2) are Laplace exponents of hyperexponential processes.
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One-sided processes

m For CM subordinators, all three functions 1™/"(z), +1/7](z),
" +2/71(2) are Laplace exponents of hyperexponential processes.

m For CM spectrally-positive processes of infinite variation, only
two functions " +t1/7](2), ["+2/7(2) are Laplace exponents of
hyperexponential processes.

m There exist explicit formulas for a number of important examples:
In the VG case we have 9[*/"(2) = P,(2)/Q,(z), where

P,(z)= QZO (?) [Hn—j — Hj] (1 - Z)jaQn(Z) =z"P, (% - 1) :

and Hj :==1+1/24---+1/j.

Daniel Hackmann 19/31
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m One can show that only /" (z), M+1/7(2) and »[M+2/71(2)
can possibly be Laplace exponents of a Lévy process
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How do we prove all these results?

m One can show that only /" (z), M+1/7(2) and »[M+2/71(2)
can possibly be Laplace exponents of a Lévy process

m The Lévy-Khintchine formula + Fubini’s theorem + change of
variables give us

2 3, %

_ 0 2 2 |v|*p* (dv)

O
[a,b]

where a < 0 < b.
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How do we prove all these results?

m One can show that only /" (z), M+1/7(2) and »[M+2/71(2)
can possibly be Laplace exponents of a Lévy process

m The Lévy-Khintchine formula + Fubini’s theorem + change of
variables give us

2 3, %
_ 0" o 2 [v|°p* (dv)
O

[a,b]
where a < 0 < b.

m (2) is closely related to Stieltjes functions:

o v(du)
f(Z) T ~/[07R1] 14+ 2u

Daniel Hackmann 20/31
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Some more theory on Stieltjes functions.

m fl"/7)(2) always exists provided m > n — 1.

m The poles of fI™/™(z) are simple, real and less than —R, and
have positive residues.

n1/ml () — (2" lqn 1(-1/2) ¢
f &) = 1/ 2 oz

m Plus convergence results

Daniel Hackmann 21/31
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Comparing the Lévy density

1
‘J\
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Figure: The graph of z7(z) (black curve) and z7™/™(z), where

w(z) = exp(—z)/z is the Lévy density of the Gamma subordinator, and
mln/n] (z) is the Lévy density corresponding to z/)[”/"](z) Padé
approximation. Blue, green and red curves correspond to n € {5, 10, 20}.
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Comparing the Lévy density
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Figure: The graph of z7(z) (black curve) and z7™/™(z), where

w(z) = exp(—z)/z is the Lévy density of the Gamma subordinator, and
mln/n] (z) is the Lévy density corresponding to z/)[”/"](z) Padé
approximation. Blue, green and red curves correspond to n € {5, 10, 20}.
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Comparing the CDF of X5

[enk@) [ k=0 [ k=1 | k=2

n=>5 33¢—4|32e—4 | 54e—4
n=10 1 2.6e—5 | 2.8¢e—5 | 5.6e —5
n=151 54e—6 | 6.4e—6 | 1.3e— 5
n=20| 1.8e—6 | 2.1e—6 | 4.6e —6

Table: The values of e, 4(t) := max,>o |[P(X; < z) — P(X™" < z)|, where
X is the Gamma process with ¢(z) = —In(1 — z) and the process X (™"
has Laplace exponent [™+*/7,

Daniel Hackmann 24/31
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Math Finance applications

We will work with the following two processes: the VG process V/
defined by the Laplace exponent

P(z) = pz — %log (1— 2) - %log(H%),
and parameters
(a,a,v) = (21.8735, 56.4414, 0.20),
and the CGMY process Z defined by the Laplace exponent
U(2) = pz + CT(=Y) [(M = 2)" = MY + (G +2)" - G"],
and parameters

(C,G,M,Y) = (1, 8.8, 14.5, 1.2).

Daniel Hackmann 25/31
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two-sided one-sided | one-sided one-sided

[2N 4+ 1/2N] [N/N] [N+1/N] | [N +2/N]
N=1 -1.58e-2 9.12e-2 7.02¢-3 -3.02e-2
N=2 1.66e-3 -6.16e-3 4.80e-3 -7.82e-4
N=3 6.20e-4 -1.28e-3 -4.32e-5 6.78e-4
N =4 1.25e-4 1.88e-4 -1.98e-4 9.81e-5
N=5 -7.19e-5 8.82e-5 -2.62e-5 -2.40e-5
N=T 4.34e-6 -8.48¢e-6 5.82e-6 -1.71e-6
N=9 -7.72e-8 3.31e-7 -6.99e-7 7.35e-7
N =12 4.85e-7 -1.81e-8 4.97e-8 -6.10e-8
N =15 -8.56e-8 -1.37e-9 -3.31e-9 6.06e-9

Table: The error in computing the price of the European call option for the
VG V-model. Initial stock price is Sp = 100, strike price K = 100, maturity
T = 0.25 and interest rate r = 0.04. The benchmark price is 2.5002779303.
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European call option

two-sided one-sided | one-sided

2N +1/2N] | [N +1/N] | [N +2/N]
N=1 -2.75e-2 1.93e-2 -3.72e-3
N =2 -4.86e-6 -4.19¢-6 9.5e-5
N=3 4.80e-7 -1.48e-5 -2.54e-7
N =4 2.9¢e-8 6.41e-7 -1.55e-7
N=5 1.14e-9 5.58e-9 6.95e-9

Table: The error in computing the price of the European call option for the
CGMY Z-model. The benchmark price is 11.9207826467.
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Asian option

Asian call option

T +
C(So, K,T) := ¢ "TE (/ Sy du — K)
0

We set the parameters So = 100, » = 0.03, T =1, K = 90 for the VG
process and K = 110 for the CGMY process.

two-sided one-sided | one-sided one-sided

[2N + 1/2N] [N/N] [N+1/N] | [N +2/N]
N=1 -1.87e-3 1.01e-3 -1.82e-3 9.88¢-4
N=2 9.49e-5 2.89%e-4 -6.33e-5 3.27e-5
N=3 1.30e-6 8.85e-6 -4.24e-6 3.99¢-6
N =4 -2.83e-6 1.07e-6 -1.36e-6 3.16e-7
N=5 -1.11e-7 -2.48e-8 -5.91e-7 -3.81e-7

Table: The error in computing the price of the Asian option for the VG

Daniel Hackmann
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Asian option

two-sided one-sided one-sided

2N +1/2N] | [N +1/N] | [N +2/N]

N=1 1.88e-4 7.42e-4 -1.19e-3
N =2 4.03e-6 9.05e-5 5.39e-6
N=3 -3.58e-7 -2.64e-6 7.93e-8
N=4 -3.88e-7 -1.01e-7 -1.21e-7
N=5 -5.26e-7 -2.47e-7 -2.49e-7

Table: The error in computing the price of the Asian option for the CGMY
Z-model. The benchmark price is 9.959300 (calculated using the [91/90]
two-sided approximation).
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Barrier option

Down-and-out barrier put option:
D(So,K,B,T):=e¢ ""E|(K — Sr)" 1i5,>B for ogth}} )

We calculate barrier option prices for the process V, for four values
So € {81,91,101,111} and with other parameters given by K = 100,
B =280,r=0.04879 and T' = 0.5

So=81|5y=911| Sy=101 | Sy =111
Benchmark | 3.39880 | 7.38668 | 1.40351 0.04280
N=2 3.44551 | 7.39225 | 1.40527 | 0.04233
N=414 3.40209 | 7.38957 | 1.40329 0.04258
N=6 3.39910 | 7.38939 | 1.40332 0.04258
N =8 3.39856 | 7.38936 | 1.40332 0.04258
N =10 3.39853 | 7.38936 | 1.40332 0.04258

Table: Barrier option prices calculated for the VG process V-model.
Benchmark prices obtained from “Fast and accurate pricing of barrier
options under Lévy processes” by Kudryavtsev and Levendorskii
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