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Introduction Asian options Approximating

Overview

Calculate the price of an Asian option when the stock price is
driven by a meromorphic process.

Determine the Mellin transform and subsequently the distribution of
Ie(q). (theory)
Discuss the steps and hurdles in implementing the algorithm.
(implementation)
Numerical results

Calculate the price of a barrier option when the stock price is any
of the processes discussed thus far.

Classify our processes as processes with completely monotone jump
densities
Demonstrate how easily approximate any completely monotone process
by a hyper-exponential process
Price barrier options (or asian options, or lookback options,...) using
the hyper-exponential process and the Wiener-Hopf factorization.
Numerical results
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Theory
Numerics and Implementation

3 Approximating Lévy processes with completely monotone jumps

Analytical methods Daniel Hackmann 1/42



Introduction Asian options Approximating

Other pricing methods

In general, pricing Asian options is difficult because they are path dependent
options and Zt = A0

∫ t
0 eXudu is not a Markov process.

1 Monte Carlo simulation

2 Moment matching, Black-Scholes setting

M.A. Milevsky and S.E. Posner. Asian options, the sum of lognormals, and the reciprocal
gamma distribution. Journal of Financial and Quantitative Analysis, 33(3):409–422, 1998.

3 Reducing to a PDE or IDE and solving numerically:

The two-dimensional process (Xt, Zt) is Markov. Derive
three-dimensional PDE for C.

S.E. Shreve. Stochastic Calculus for Finance II. Springer–Verlag, New York, 2004.

Write C in terms of Z̃t := (x + Zt)e−Xt by a change of measure. Since

Z̃t is Markov, we can compute C by solving the backward Kolmogorov
equation (two-dimensional IDE).

J. Vecer and M. Xu. Pricing Asian options in a semimartingale model. Quantitative
Finance, 4(2):170–175, 2004.

E. Bayraktar and H. Xing. Pricing Asian options for jump diffusions. Mathematical
Finance, 21(1):117–143, 2011.
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Introduction Asian options Approximating

The distribution of Ie(q)

The hyper-exponential case (finite activity jumps)

N. Cai and S.G. Kou. Pricing Asian options under a hyper-exponential jump diffusion model.
Operations Research, 60(1):64–77, 2012.

Processes with jumps of rational transform (finite activity jumps)

A. Kuznetsov. On the distribution of exponential functionals for Lévy processes with jumps
of rational transform. Stoch. Proc. Appl., 122(2):654–663, 2012.

Hyper-geometric processes (infinite activity jumps but
distribution is known for only one value of q)

A. Kuznetsov and J.C Pardo. Fluctuations of stable processes and exponential functionals of
hypergeometric Lévy processes. Acta Applicandae Mathematicae, 123(1):113 – 139, 2013.

Analytical methods Daniel Hackmann 3/42



Introduction Asian options Approximating

Asian call

Recall, we wish to compute

C(A0,K, T ) := e−rTE

( 1

T

∫ T

0

A0e
Xudu−K

)+
 ,

or equivalently compute

f(k, t) := E

[(∫ t

0

eXudu− k
)+
]
.

Analytical methods Daniel Hackmann 4/42



Introduction Asian options Approximating

Asian call

Our proposed algorithm follows Cai and Kou. That is, we transform once

h(k, q) := q

∫
R+

e−qtf(k, t)dt = E

[(∫ e(q)

0

eXtdt− k

)+]
,

and then again

Φ(z, q) :=

∫
R+

h(k, q)kz−1dk = E
[∫

R+

(
Ie(q) − k

)+
kz−1dk

]

= E
[∫ Ie(q)

0

(
Ie(q) − k

)
kz−1dk

]
=

E
[
Iz+1
e(q)

]
z(z + 1)

=
M(Ie(q), z + 2)

z(z + 1)
,

to get an expression for the doubly transform price in terms of the Mellin

transform of the exponential functional.

Analytical methods Daniel Hackmann 5/42



Introduction Asian options Approximating

Products of Beta random variables

With any two unbounded sequences α = {αn}n≥1 and β = {βn}n≥1
which satisfy the interlacing property

0 < α1 < β1 < α2 < β2 < α3 < β3 . . .

we associate an infinite product of independent beta random
variables, defined as

J(α, β) :=
∏
n≥1

B(αn, βn−αn)
βn
αn

.

Lemma

J(α, β) converges a.s.

Analytical methods Daniel Hackmann 6/42
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Main Result

Theorem (H. and Kuznetsov, 2014)

Assume that q > 0. Define ρ̂0 := 0 and the four sequences

ζ := {ζn}n≥1, ρ := {ρn}n≥1, ζ̃ := {1 + ζ̂n}n≥1, ρ̃ := {1 + ρ̂n−1}n≥1.

Then we have the following identity in distribution

Ie(q)
d
= C(q)× J(ρ̃, ζ̃)

J(ζ, ρ)
,

where C(q) is a constant and the random variables J(ρ̃, ζ̃) and J(ζ, ρ)
are independent. cont. →

Analytical methods Daniel Hackmann 7/42
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Main Result

Theorem (cont.)

The Mellin transform M(Ie(q), z) is finite for 0 < Re(z) < 1 + ζ1 and is
given by

M(Ie(q), z) = Cz−1

M(J(ρ̃,ζ̃),z)︷ ︸︸ ︷∏
n≥1

Γ(ζ̂n + 1)Γ(ρ̂n−1 + z)

Γ(ρ̂n−1 + 1)Γ(ζ̂n + z)

(
ζ̂n + 1

ρ̂n−1 + 1

)z−1

×

∏
n≥1

Γ(ρn)Γ(ζn + 1− z)
Γ(ζn)Γ(ρn + 1− z)

(
ζn
ρn

)z−1

︸ ︷︷ ︸
M(J(ζ,ρ),2−z)

.

D. Hackmann and A. Kuznetsov.

Asian options and meromorphic Lévy processes.

Finance and Stochastics, 18:825–844, 2014.
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Introduction Asian options Approximating

A rough idea of the proof

We use the verification result of Kuznetsov and Pardo: A function
f(z) is the Mellin transform of Ie(q) if

1 for some θ > 0, the function f(z) is analytic and zero free in the
vertical strip 0 < Re(z) < 1 + θ;

2 the function f(z) satisfies

f(z + 1) =
z

q − ψ(z)
f(z), 0 < z < θ,

where ψ(z) is the Laplace exponent of the process X;

3 |f(z)|−1 = o(exp(2π|Im(z)|)) as Im(z)→∞, uniformly in the
strip 0 < Re(z) < 1 + θ.

Analytical methods Daniel Hackmann 9/42
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A rough idea of the proof

We need to find a candidate function f(z) and we let point 2 guide
us. We are aided by the fact that q − ψ(z) is just a product of linear
factors involving the roots and poles. That is,

q − ψ(z) = q
∏
n≥1

1− z
ζn

1− z
ρn

×
∏
n≥1

1 + z
ζ̂n

1 + z
ρ̂n

, z ∈ C,

where the two infinite products converge.

A. Kuznetsov. Wiener-Hopf factorization for a family of Lévy processes related to theta functions.
Journal of Applied Probability, 47(4):1023–1033, 2010.

Analytical methods Daniel Hackmann 10/42
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A rough idea of the proof

Therefore, we are solving many simpler functional equations of the
form:

f(z + 1) = (a± z)kf(z),

where a represents a root or a pole, and k ∈ {−1, 1}. A solution of
such an equation can readily be obtained using the well known
formula

Γ(z + 1) = zΓ(z),

for the gamma function.

Analytical methods Daniel Hackmann 11/42
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Setup

To obtain the price we need to compute h(k, q) as the inverse Mellin
transform

h(k, q) =
k−d1

2π

∫
R

M(Ie(q), d1 + iv + 2)

(d1 + iv)(d1 + iv + 1)
e−iv log(k)dv,

where d1 ∈ (0, ζ1(d2)− 1), q = d2 + iu, and d2 > r. Second, we
compute f(k, t) as the inverse Laplace transform, which can be
rewritten as the cosine transform

f(k, t) =
2ed2t

π

∫
R+

Re

(
h(k, d2 + iu)

d2 + iu

)
cos(ut)du.

Analytical methods Daniel Hackmann 12/42
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Implementation

The steps we need to follow/hurdles we need to overcome are:

Choose a process

Evaluate M(Ie(q), z) for complex q

Truncate M(Ie(q), z) efficiently
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Introduction Asian options Approximating

The process

We will use a theta process for which we have a closed form formula
for ψ(z). We can manipulate parameters of the the process to give a
process with infinite activity and variation.

Parameter Set I will give a process with a Gaussian component and
jumps of infinite activity but finite variation.

Parameter Set II gives a process with zero Gaussian component and
jumps of infinite variation.

Analytical methods Daniel Hackmann 14/42
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Complex q

Unfortunately, we do not know whether or formula for M(Ie(q), z) is
valid for complex q. Our numerical experiments support the
conjecture that it is.

What about finding the roots {ζn, −ζ̂n}n≥1 when q = q0 + iu,
u ∈ R+?

Analytical methods Daniel Hackmann 15/42
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Complex q

We may view ζn(u) as an implicitly defined function of u which
satisfies,

q0 + iu− ψ(ζn(u)) = 0, ζn(0) = ζn,

where ζn is the solution of ψ(z) = q0. Differentiating each side with
respect to u gives the ordinary differential equation

d

du
ζn(u) =

i

ψ′(ζn(u))
,

with initial condition ζn(0) = ζn. Such an equation can be solved
nicely by a numerical scheme like the midpoint method.

Analytical methods Daniel Hackmann 16/42
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Truncating M(Ie(q), z)

To approximate M(Ie(q), z) we can simply truncate our infinite
product, but convergence may be slow. The more terms we need, the
more roots {ζn, ζ̂n}n≥1 we need to calculate which is computationally
expensive. Note if we truncate the transform we get:

MN (z) := aN × bz−1N ×
N∏
n=1

Γ(ρ̂n−1 + z)

Γ(ζ̂n + z)

Γ(ζn + 1− z)
Γ(ρn + 1− z)

where and aN and bN are normalizing constants.

Analytical methods Daniel Hackmann 17/42
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Truncating M(Ie(q), z)

Now we note that

M(Ie(q), z) =MN (z)RN (z)

where RN (z) =M(Ie(q), z)/MN (z) is the Mellin transform of the tail

of our product of beta random variables which we denote ε(N).
Instead of simply letting RN (s) = 1 we try to find a random variable
ξ matching the moments of ε(N).

Analytical methods Daniel Hackmann 18/42
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Truncating M(Ie(q), z)

We can calculate the moments mk using the functional equation
M(Ie(q), z + 1) = zM(Ie(q), z)/(q − ψ(z)), we find

mk = RN (k + 1) =
M(Ie(q), k + 1)

MN (k + 1)
=

k!

MN (k + 1)

k∏
j=1

1

q − ψ(j)
.

Analytical methods Daniel Hackmann 19/42
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Truncating M(Ie(q), z)

Finally we let ξ be a beta random variable of the second kind which
has density:

P(ξ ∈ dx) =
Γ(a)Γ(b)

Γ(a+ b)
ya−1(1 + y)−a−bdy, y > 0.

We choose a, b > 0 such E[ξ] = m1 and E[ξ2] = m2, and replace
RN (z) with the Mellin transform of ξ which has the form:

E[ξz−1] =
Γ(a+ z − 1)Γ(b+ 1− z)

Γ(a)Γ(b)
.

Analytical methods Daniel Hackmann 20/42
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A test: Calculating the density of Ie(1)
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Figure : (a) The density of the exponential functional Ie(1) with N = 400
(the benchmark). (b) The error with N = 20 (no correction). (c) The error
with N = 20 (with correction term). Solid line (resp. circles) represent
parameter set I (resp. II).
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Numerics: Pricing an Asian Option Results

N Algorithm 1, price Time (sec.) Algorithm 2, price Time (sec.)

10 4.724627 1.6 4.720675 1.2
20 4.727780 2.8 4.728032 1.8
40 4.728013 4.8 4.728031 3.4
80 4.728029 9.2 4.728031 7.1

Table : The price of the Asian option, parameter set I. The Monte-Carlo
estimate of the price is 4.7386 with the standard deviation 0.0172. The
exact price is 4.72802±1.0e-5.

Option parameters: A0 = 100, T = 1, K = 105, and r = 0.03, with
risk neutral condition ψ(1) = r satisfied (this and the assumption
ρ1 > 1 ensures key quantities are finite).
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Introduction Asian options Approximating

Numerics: Pricing an Asian Option Results

N Algorithm 1, price Time (sec.) Algorithm 2, price Time (sec.)

10 10.620243 1.6 10.621039 1.2
20 10.620049 3.0 10.620171 2.2
40 10.620037 4.8 10.620054 3.6
80 10.620036 9.6 10.620039 7.4

Table : The price of the Asian option, parameter set II. The Monte-Carlo
estimate of the price is 10.6136 with the standard deviation 0.0251. The
exact price is 10.62003±1.0e-5.

Analytical methods Daniel Hackmann 23/42
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Introduction Asian options Approximating

Classification: Completely monotone jumps

Definition

A function f(x) is called completely monotone if (−1)nf (n)(x) > 0 for
all x > 0, n = 0, 1, 2, . . . .

Definition

A Lévy process has completely monotone jumps, if the Lévy measure
is absolutely continuous with density π(x), and π(x) and π(−x) are
completely monotone for x ∈ (0,∞).

Assumption: From now on we assume all processes have completely
monotone jumps and π(x) decreases exponentially fast as x→ ±∞.

Analytical methods Daniel Hackmann 24/42
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Some facts

All of the processes mentioned satisfy our assumption.

Hyper-exponential processes are dense in the class of completely
monotone processes in the sense of weak convergence.

M. Jeannin and M. Pistorius.
A transform approach to compute prices and Greeks of barrier options driven by a class of
Lévy processes.
Quantitative Finance, 10:629–644, 2010.

The jump density of a process X is completely monotone if, and
only if, Sq and Iq are mixtures of exponentials.

L.C.G. Rogers.
Weiner-Hopf factorization of diffusions and Lévy processes.
Proc. Lond. Math. Soc., 47(3):177–191, 1983.
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Introduction Asian options Approximating

Main idea

Approximating a Lévy process is equivalent to approximating its
Laplace exponent ψ(z).

The Laplace exponent of a hyper-exponential process is a rational
function.

Thus we have two problems:

(1) Approximate ψ(z) by a rational function ψ̃(z),

(2) Show that ψ̃(z) is itself a Laplace exponent of a Lévy process.

Analytical methods Daniel Hackmann 26/42



Introduction Asian options Approximating

Main idea
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Padé approximation

Definition

Let f be a function with a power series representation
f(z) =

∑∞
i=0 ciz

i. If there exist polynomials Pm(z) and Qn(z)
satisfying deg(P ) ≤ m, deg(Q) ≤ n, Qn(0) = 1 and

Pm(z)

Qn(z)
= c0 + c1z + · · ·+ cm+nz

m+n +O(zm+n+1), z → 0,

then we say that f [m/n](z) := Pm(z)/Qn(z) is the [m/n] Padé
approximant of f .
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A simple example of Padé approximations

Figure : The initial part of the Padé table for ez
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Gaussian quadrature

ν is a finite positive measure on a closed bounded interval [a, b]

For each n we want to find a measure ν̃n on a finite number of
points in [a, b] such that we match the first 2n− 1 moments of ν,
i.e. ∫

[a,b]

xjν(dx) =
n∑
i

xjiwi, , for j = 1, . . . , 2n− 1.

The points xi and wi are the nodes and weights of the Gaussian
quadrature.
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Gaussian quadrature and orthogonal polynomials

{pn(x)}n≥0 be the sequence of orthogonal polynomials with
respect to the measure ν(dx): deg(pn) = n and

(pn, pm)ν :=

∫
[a,b]

pn(x)pm(x)ν(dx) = dnδn,m

The nodes of the Gaussian quadrature ν̃n are the zeros of pn and
the weights may be calculated from pn−1, pn.

G. Szegö.
Orthogonal Polynomials.
Amer. Math. Soc., Providence, RI, 4 edition, 1975.
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Bernstein’s Theorem

We can develop a very useful description of the processes which
satisfy our assumption using Bernstein’s theorem. A process satisfies
our assumption if, and only if, there exists a positive measure µ(du),
with support in R\{0}, such that for all x ∈ R

π(x) = I(x > 0)

∫
(0,∞)

e−uxµ(du) + I(x < 0)

∫
(−∞,0)

e−uxµ(du), (1)

and µ(du) assigns no mass to a non-empty interval (−ρ̂, ρ) containing
the origin + integrability condition on µ(du).
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A change of variables

We define

µ∗(A) := µ({v ∈ R : v−1 ∈ A}).

Then, the Lévy-Khintchine formula + Fubini’s theorem + change of
variables give us

ψ(z) =
σ2

2
z2 + az + z2

∫
[−ρ̂−1,ρ−1]

|v|3µ∗(dv)

1− vz
.

Key Observation: |v|3µ∗(dv) is a finite measure, with bounded
support.
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Main theorem (two-sided case)

Assume that σ = 0. Let {xi}1≤i≤n and {wi}1≤i≤n be the nodes and
the weights of the Gaussian quadrature of order n with respect to the
measure |v|3µ∗(dv). We define

ψn(z) := az + z2
n∑
i=1

wi
1− zxi

.

Theorem (H. and Kuznetsov, 2014)

(i) The function ψn(z) is the [n+ 1/n] Padé approximant of ψ(z).

(ii) The function ψn(z) is the Laplace exponent of a hyper-exponential
process X(n) having the characteristic triple (a, σ2

n, πn)h≡x, where
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Main theorem (two-sided case)

Theorem (cont.)

(ii)

πn(x) :=


∑

1≤i≤n : xi<0

wi|xi|−3e−
x
xi , if x < 0,∑

1≤i≤n : xi>0

wix
−3
i e
− x

xi , if x > 0.

(iii) The random variables X
(n)
1 and X1 satisfy E[(X

(n)
1 )j ] = E[(X1)j ]

for 1 ≤ j ≤ 2n+ 1.
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Convergence

Theorem (H. and Kuznetsov, 2014)

For any compact set A ⊂ C \ {(−∞,−ρ̂] ∪ [ρ,∞)} there exist
c1 = c1(A) > 0 and c2 = c2(A) > 0 such that for all z ∈ A and all
n ≥ 1

|ψn(z)− ψ(z)| < c1e
−c2n.

D. Hackmann and A. Kuznetsov.
Approximating Lévy processes with completely monotone jumps.
http://arxiv.org/abs/1404.0597, 2014.
Forthcoming in The Annals of Applied Probability.
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One-sided processes

For CM subordinators, all three functions ψ[n/n](z), ψ[n+1/n](z),
ψ[n+2/n](z) are Laplace exponents of hyper-exponential processes.

For CM spectrally-positive processes of infinite variation, only
two functions ψ[n+1/n](z), ψ[n+2/n](z) are Laplace exponents of
hyper-exponential processes.

There exist explicit formulas for a number of important examples:
In the VG case we have ψ[n/n](z) = Pn(z)/Qn(z), where

Pn(z) = 2

n∑
j=0

(
n

j

)2

[Hn−j −Hj ] (1− z)j , Qn(z) = znPn
(
2
z − 1

)
.

and Hj := 1 + 1/2 + · · ·+ 1/j.
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How do we prove all these results?

One can show that only ψ[n/n](z), ψ[n+1/n](z) and ψ[n+2/n](z)
can possibly be Laplace exponents of a Lévy process

The function

g(z) =

∫
[−ρ̂−1,ρ−1]

|v|3µ∗(dv)

1− vz
.

is closely related to a Stieltjes function:

f(z) :=

∫
[0,R−1]

ν(du)

1 + zu
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Some more theory on Stieltjes functions.

f [m/n](z) always exists provided m ≥ n− 1.

The poles of f [m/n](z) are simple, real and less than −R, and have
positive residues.

f [n−1/n](z) =
(−z)n−1qn−1(−1/z)

(−z)npn(−1/z)
=

n∑
i=1

wi
1 + xiz

.

Plus convergence results

G.A. Baker and P. Graves-Morris.
Padé Approximants.
Cambridge University Press, Cambridge–New York, 2 edition, 1996.

G.D. Allen, C.K. Chui, W.R. Madych, F.J. Narcowich, and P.W. Smith.
Padé approximation of Stieltjes series.
Journal of approximation theory, 14:302–316, 1975.
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Math Finance applications

We will work with the following two processes: the VG process V
defined by the Laplace exponent

ψ(z) = µz − c log

(
1− z

ρ

)
− c log

(
1 +

z

ρ̂

)
,

and parameters

(ρ, ρ̂, c) = (21.8735, 56.4414, 5.0),

and the CGMY process Z defined by the Laplace exponent

ψ(z) = µz + CΓ(−Y )
[
(M − z)Y −MY + (G+ z)Y −GY

]
,

and parameters

(C,G,M, Y ) = (1, 8.8, 14.5, 1.2).
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A test: European call

two-sided one-sided one-sided
[2N + 1/2N ] [N + 1/N ] [N + 2/N ]

N = 1 -2.75e-2 1.93e-2 -3.72e-3
N = 2 -4.86e-6 -4.19e-6 9.5e-5
N = 3 4.80e-7 -1.48e-5 -2.54e-7
N = 4 2.9e-8 6.41e-7 -1.55e-7
N = 5 1.14e-9 5.58e-9 6.95e-9

Table : The error in computing the price of the European call option for
the CGMY Z-model. Initial stock price is A0 = 100, strike price K = 100,
maturity T = 0.25 and interest rate r = 0.04. The benchmark price is
11.9207826467.
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Down-and-out put

pI(y) =

N̂+1∑
i=1

ĉiζ̂ie
ζ̂iy, y < 0, and pS(x) =

N+1∑
j=1

cjζje
−ζjx, x > 0.

F (q) = E[(k − eSq+Iq )+I(Iq > b)]

=

∫ −b
0

∫ log(k)+y

0

(k − ex−y)pS(x)pI(−y)dxdy

=

N̂+1∑
i=1

N+1∑
j=1

ĉicj
ζj − 1

×

(
k(ebζ̂i − 1)(1− ζj)−

k1−ζj ζ̂i(e
b(ζj+ζ̂i) − 1)

ζ̂i + ζj
+
ζ̂iζj(e

b(1+ζ̂i) − 1)

ζ̂i + 1

)
.
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Down-and-out put

We calculate barrier option prices for the process V , for four values
A0 ∈ {81, 91, 101, 111} and with other parameters given by K = 100,
B = 80, r = 0.04879 and T = 0.5

A0 = 81 A0 = 91 A0 = 101 A0 = 111

Benchmark 3.39880 7.38668 1.40351 0.04280

N = 2 3.44551 7.39225 1.40527 0.04233

N = 4 3.40209 7.38957 1.40329 0.04258

N = 6 3.39910 7.38939 1.40332 0.04258

N = 8 3.39856 7.38936 1.40332 0.04258

N = 10 3.39853 7.38936 1.40332 0.04258

Table : Barrier option prices calculated for the VG process V -model.
Benchmark prices obtained from Kudryavtsev and Levendorskĭi 2009

O. Kudryavtsev and S. Levendorskĭi.

Fast and accurate pricing of barrier options under Lévy processes.

Finance Stoch., 13:531–562, 2009.
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