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Overview

Review some integral transform methods (Fourier, Laplace,
Mellin) for pricing a variety of options in Lévy driven models

Show the natural connection to the Laplace exponent, the
Wiener-Hopf factors, and the exponential functional

Introduce (review) two families of “analytically tractable” Lévy
processes

Demonstrate two new results for pricing a variety of options using
the existing integral transform methods and these two families
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Show the natural connection to the Laplace exponent, the
Wiener-Hopf factors, and the exponential functional

Introduce (review) two families of “analytically tractable” Lévy
processes

Demonstrate two new results for pricing a variety of options using
the existing integral transform methods and these two families

Analytical methods Daniel Hackmann 1/60
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Lévy process
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European Call

Compute

E(A0,K, T ) := e−rTE[(AT −K)+],

equivalently, compute

f(k) := E[(AT − ek)+],

where At = A0 exp(Xt) is the stock price, T is the expiry, r is the
discount rate, K is the strike price, and k = log(K).
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European Call (cont.)

Carr and Madan 1999: Consider the Laplace transform of f(k)

φ(z) =

∫
R
f(k)ezkdk =

E[Az+1
t ]

z(z + 1)
= Az+1

0

etψ(z+1)

z(z + 1)
,

where ψ(z) is the Laplace exponent of X, i.e.

ψ(z) :=
1

t
logE[ezXt ], z ∈ iR.

We see that if ψ(z) can be identified explicitly, then we have an
explicit expression for φ(z).
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Barrier Options: Down-and-out Put

Compute

D(A0,K,B, T ) := e−rTE
[
(K −AT )+I

(
inf

0≤t≤T
At > B

)]
,

equivalently, compute

f(t) := E[(k − eXt)+I(Xt > b)],

where 0 < B < A0 is the barrier, Xt := inf0≤s≤tXs is the running
infimum process, k := K/S0, and b := log(B/A0).
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Barrier Options: Down-and-out Put (cont.)

Jeannin and Pistorius 2010 : Consider the Laplace transform of f(t)

F (q) := q

∫
R+

e−qtf(t)dt = E[(k − eXe(q))+I(Xe(q) > b)],

where e(q) is an exponential random variable, independent of X,
which has mean q−1.

Why is this useful?
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Aside: The Wiener-Hopf factorization

Define Sq := Xe(q) and Iq := Xe(q)

The Wiener-Hopf factors are defined as φ+
q (z) := E[exp(−zSq)]

and φ−
q (z) := E[exp(zIq)]

Xe(q) − Sq is independent of Sq and has the same distribution as
Iq.

q

q − ψ(z)
= φ+

q (−z)φ−
q (z), z ∈ iR,

since

q

q − ψ(z)
= E

[
ezXe(q)

]
= E

[
ez(Xe(q)−Sq)+zSq

]
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Back to the down-and-out put

Using the Wiener-Hopf factorization we may rewrite F (q) as

F (q) = E[(k − eXe(q))+I(Xe(q) > b)]

= E[(k − eSq+Iq )+I(Iq > −b)].

Now, if we know the Wiener-Hopf factors explicitly, or even better, if
we know the distributions of Iq and Sq we can work out a
semi-explicit, or even explicit expression for F (q). Lookback options
can be treated similarly.

Analytical methods Daniel Hackmann 7/60
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Perpetual American put

Compute

v(x) := sup
τ∈T

E[e−rτ (K − ex+Xτ )+],

where T is the set of all stopping times for the filtration generated by
X. Then for Regular Lévy processes of exponential type (e.g. NIG,
and CGMY) we have (Boyarchenko and Levendorskĭi 2002 and Alili
and Kyprianou 2005)∫

R
eizxv(x)dx = K

eizx
∗

iz(iz + 1)
φ−q (−iz), z ∈ R,

where

x∗ = log(K)φ−q (1).
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Asian call

Compute fwd

C(A0,K, T ) := e−rTE

( 1

T

∫ T

0

A0e
Xudu−K

)+
 ,

equivalently compute

f(k, t) := E

[(∫ t

0

eXudu− k
)+
]
.

.
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Asian call (cont.)

Taking the Laplace transform we get

h(k, q) := q

∫
R+

e−qtf(k, t)dt = E

(∫ e(q)

0

eXtdt− k

)+
 .

Why is this useful?

The object Ie(q) :=
∫ e(q)

0
eXtdt is known as the exponential functional

of the Lévy process X. It is a well-studied object with applications
outside of mathematical finance. Also, there exist several known
methods for determining its distribution.
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Asian call (cont.)

If the distribution of Ie(q) is known, and tractable enough, then we
can determine h(k, q) explicitly (Yor and Geman 1993). If not, we can
transform h(k, q) again

Φ(z, q) :=

∫
R+

h(k, q)kz−1dk = E
[∫

R+

(
Ie(q) − k

)+
kz−1dk

]

= E

[∫ Ie(q)

0

(
Ie(q) − k

)
kz−1dk

]
=

E
[
Iz+1
e(q)

]
z(z + 1)

=
M(Ie(q), z + 2)

z(z + 1)
,

where M(Ie(q), z) := E[Iz−1e(q) ] is the Mellin transform of Ie(q). This

approach was pioneered by Cai and Kou 2010. If we can find an
explicit expression for M(Ie(q), z), then we have an explicit expression
for Φ(z, q).
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Analytically tractable families

We have seen, that the transform techniques depend on three key
objects: the Laplace exponent, the Wiener-Hopf factors, and the
exponential functional. Naturally, we ask: Are there Lévy processes
for which we have explicit expressions for all three?

Yes, for example:

Processes with jumps of rational transform

Processes with phase-type jumps
Hyper-exponential processes

Meromorphic processes

Analytical methods Daniel Hackmann 12/60
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Example: Hyper-exponential process

The density of the Lévy measure is fwd

π(x) = I(x > 0)

N∑
n=1

anρne
−ρnx + I(x < 0)

N̂∑
i=1

ânρ̂ne
ρ̂nx,

where all the coefficients are positive.

Analytical methods Daniel Hackmann 13/60
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Example: Hyper-exponential process

The Laplace exponent is a rational function

ψ(z) =
σ2z2

2
+ µz + z2

N̂∑
n=1

ân
ρ̂n(ρ̂n + z)

+ z2
N∑
n=1

an
ρn(ρn − z)

,

and the (real) solutions ζn and −ζ̂n of ψ(z) = q and the poles of ψ(z)
satisfy the important interlacing property

0 < ζ1 < ρ1 < ζ2 < ρ2 . . .

0 < ζ̂1 < ρ̂1 < ζ̂2 < ρ̂2 . . . .

Analytical methods Daniel Hackmann 14/60



Introduction Transform methods Lévy families Asian options Approximating

Example: Hyper-exponential process

Assume σ > 0 fwd

The Wiener-Hopf factors are given by

φ+

q (z) =
1

1 + z
ζ1

N∏
n=1

1 + z
ρn

1 + z
ζn+1

, φ−
q (z) =

1

1 + z
ζ̂1

N̂∏
n=1

1 + z
ρ̂n

1 + z
ζ̂n+1

,

The distribution of Sq is a mixture of exponentials

d

dx
P(Sq ≤ x) =

N+1∑
n=1

cnζne
−ζnx,

where cn > 0 and
∑
cn = 1, and similarly for Iq.

Analytical methods Daniel Hackmann 15/60
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Example: Hyper-exponential process

Define

G(z) :=

∏N+1
n=1 Γ(ζk − z + 1)∏N
n=1 Γ(ρn − z + 1)

×
∏N̂
n=1 Γ(ρ̂n + z)∏N̂+1
k=1 Γ(ζ̂k + z)

,

then

M(Ie(q), z) =

(
σ2

2

)1−z

× Γ(z)× G(z)

G(1)
,

and

Ie(q)
d
=

2

σ2

B(1,ζ̂1)

G(ζN+1,1)

∏N̂
n=1B(ρ̂n+1,ζ̂n+1−ρ̂n)∏N
n=1B(ζn,ρn−ζn)

.
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Example: Hyper-exponential process

It seems like Hyper-exponential processes have everything we want,
however, they have one serious disadvantage: hyper-exponential
processes are necessarily finite activity processes, and for applications
in finance we often want infinite activity processes, sometimes maybe
even infinite variation.

Analytical methods Daniel Hackmann 17/60
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Meromorphic processes

Meromorphic processes are the generalization of hyper-exponential
processes. Essentially, a meromorphic process results from replacing
the finite sum in the Lévy density of a hyper-exponential process by
an infinite series. recall

Everything has an“infinite” analogue which has precisely the expected
form.

Jump
activity

Laplace
exponent

Interlacing
property

Wiener-
Hopf
factors

Exp.
functional

Hyper-
exp.

Finite Rational Yes Finite
product

Finite
product
of r.v.’s

Mero-
morphic

Any Mero-
morphic

Yes Infinite
product

Infinite
product
of r.v.’s *

Analytical methods Daniel Hackmann 18/60
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Popular stock price models

Popular processes used to model log-stock prices in the literature
include the Variance gamma (VG), CGMY/KoBol, and NIG
processes. These have the desired infinite jump activity property, but
they are cumbersome for pricing some of the path dependent options:
none have explicit Wiener-Hopf factorizations, and the distribution of
the exponential functional is unknown for all. So what can we do?

1 Use meromorphic processes

2 Approximate by meromorphic processes

3 Approximate by hyper-exponential processes? **

Analytical methods Daniel Hackmann 19/60
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Other pricing methods

The complication is that we have a path dependent option and
Zt = A0

∫ t
0
eXudu is not a Markov process. recall

There are other pricing methods: Monte Carlo, Brownian Motion
(Milevsky and Posner 1998 & Shreve 2004), IDE (Semimartingale
Vecer and Xu 2004 & Jump diffusion Bayraktar and Xing 2011).

However, I have not seen any papers which price these options in the
general setting of processes with two-sided jumps and infinite
activity/infinite variation other than with Monte Carlo methods.

Analytical methods Daniel Hackmann 20/60
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The distribution of Ie(q)

Kai and Cou 2010 for the hyper-exponential case (finite activity
jumps)

Kuznetsov 2012 for processes of jumps of rational transform
(finite activity jumps)

A. Kuznetsov and J.C. Pardo, 2013 for hyper-geometric processes
(infinite activity jumps but distribution is known for only one
value of q)

Analytical methods Daniel Hackmann 21/60
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Products of Beta random variables

With any two unbounded sequences α = {αn}n≥1 and β = {βn}n≥1
which satisfy the interlacing property

0 < α1 < β1 < α2 < β2 < α3 < β3 . . .

we associate an infinite product of independent beta random
variables, defined as

J(α, β) :=
∏
n≥1

B(αn, βn−αn)
βn
αn

.

Lemma

J(α, β) converges a.s.

Analytical methods Daniel Hackmann 22/60



Introduction Transform methods Lévy families Asian options Approximating

Main Result

Theorem

Assume that q > 0. Define ρ̂0 := 0 and the four sequences

ζ := {ζn}n≥1, ρ := {ρn}n≥1, ζ̃ := {1 + ζ̂n}n≥1, ρ̃ := {1 + ρ̂n−1}n≥1.

Then we have the following identity in distribution

Ie(q)
d
= C(q)× J(ρ̃, ζ̃)

J(ζ, ρ)
,

where C(q) is a constant and the random variables J(ρ̃, ζ̃) and J(ζ, ρ)
are independent. cont. →

Analytical methods Daniel Hackmann 23/60
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Main Result cont.

Theorem cont.

The Mellin transform M(Ie(q), z) is finite for 0 < Re(z) < 1 + ζ1 and
is given by

M(Ie(q), z) = Cs−1

M(J(ρ̃,ζ̃),z)︷ ︸︸ ︷∏
n≥1

Γ(ζ̂n + 1)Γ(ρ̂n−1 + z)

Γ(ρ̂n−1 + 1)Γ(ζ̂n + z)

(
ζ̂n + 1

ρ̂n−1 + 1

)z−1
×

∏
n≥1

Γ(ρn)Γ(ζn + 1− z)
Γ(ζn)Γ(ρn + 1− z)

(
ζn
ρn

)z−1
︸ ︷︷ ︸

M(J(ζ,ρ),2−z)

.

Analytical methods Daniel Hackmann 24/60
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A rough idea of the proof

We use the following verification result due to Kuznetsov and Pardo
2013: A function f(z) is the Mellin transform of Ie(q) if

1 for some θ > 0, the function f(z) is analytic and zero free in the
vertical strip 0 < Re(z) < 1 + θ;

2 the function f(z) satisfies

f(z + 1) =
z

q − ψ(z)
f(z), 0 < z < θ,

where ψ(z) is the Laplace exponent of the process X;

3 |f(z)|−1 = o(exp(2π|Im(z)|)) as Im(z)→∞, uniformly in the
strip 0 < Re(z) < 1 + θ.

Analytical methods Daniel Hackmann 25/60
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A rough idea of the proof (cont.)

We need to find a candidate function f(z) and we let point 2 guide
us. We are aided by the fact that q − ψ(z) is just a product of linear
factors involving the roots and poles recall . Therefore, we are solving
many simpler functional equations of the form:

f(z + 1) = (a± z)kf(z),

where a represents a root or a pole, and k ∈ {−1, 1}. A solution of
such an equation can readily be obtained using the well known
formula

Γ(z + 1) = zΓ(z),

for the gamma function.

Analytical methods Daniel Hackmann 26/60
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Numerics

We will use a theta process for which we have a closed form formula
for ψ(z). We can manipulate parameters of the the process to give a
process with infinite activity and variation.

Parameter Set I will give a process with a Gaussian component and
jumps of infinite activity but finite variation.

Parameter Set II gives a process with zero Gaussian component and
jumps of infinite variation.

A0 = 100, T = 1, K = 105, and r = 0.03, with risk neutral condition
ψ(1) = r satisfied (this and the assumption ρ1 > 1 ensures key
quantities are finite).

Analytical methods Daniel Hackmann 27/60
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Numerics: Pricing an Asian Option Results

N Algorithm 1, price Time (sec.) Algorithm 2, price Time (sec.)

10 4.724627 1.6 4.720675 1.2
20 4.727780 2.8 4.728032 1.8
40 4.728013 4.8 4.728031 3.4
80 4.728029 9.2 4.728031 7.1

Table : The price of the Asian option, parameter set I. The Monte-Carlo
estimate of the price is 4.7386 with the standard deviation 0.0172. The
exact price is 4.72802±1.0e-5.

Details

Analytical methods Daniel Hackmann 28/60
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Numerics: Pricing an Asian Option Results

N Algorithm 1, price Time (sec.) Algorithm 2, price Time (sec.)

10 10.620243 1.6 10.621039 1.2
20 10.620049 3.0 10.620171 2.2
40 10.620037 4.8 10.620054 3.6
80 10.620036 9.6 10.620039 7.4

Table : The price of the Asian option, parameter set II. The Monte-Carlo
estimate of the price is 10.6136 with the standard deviation 0.0251. The
exact price is 10.62003±1.0e-5.
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Completely monotone jumps

Definition

A function f(x) is called completely monotone if (−1)nf (n)(x) > 0 for
all x > 0, n = 0, 1, 2, . . . .

Definition

A Lévy process has completely monotone jumps, if the Lévy measure
is absolutely continuous with density π(x), and π(x) and π(−x) are
completely monotone for x ∈ (0,∞).

Assumption: From now on we assume all processes have completely
monotone jumps and π(x) decreases exponentially fast as x→ ±∞.

Analytical methods Daniel Hackmann 30/60
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Some facts

All of the processes mentioned satisfy our assumption.

Hyper-exponential processes are dense in the class of completely
monotone processes in the sense of weak convergence (Jeannin
and Pistorius 2010).

The jump density of a process X is completely monotone if, and
only if, Sq and Iq are mixtures of exponentials (Rogers 1983).

Analytical methods Daniel Hackmann 31/60
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Main idea

Approximating a Lévy process is equivalent to approximating its
Laplace exponent ψ(z).

The Laplace exponent of a hyperexponential process is a rational
function.

Thus we have two problems:

(1) Approximate ψ(z) by a rational function ψ̃(z),

(2) Show that ψ̃(z) is itself a Laplace exponent of a Lévy process.

Analytical methods Daniel Hackmann 32/60
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Padé approximation

Definition

Let f be a function with a power series representation
f(z) =

∑∞
i=0 ciz

i. If there exist polynomials Pm(z) and Qn(z)
satisfying deg(P ) ≤ m, deg(Q) ≤ n, Qn(0) = 1 and

Pm(z)

Qn(z)
= c0 + c1z + · · ·+ cm+nz

m+n +O(zm+n+1), z → 0,

then we say that f [m/n](z) := Pm(z)/Qn(z) is the [m/n] Padé
approximant of f .

Analytical methods Daniel Hackmann 33/60
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A simple example of Padé approximations

Figure : The initial part of the Padé table for ez
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Introduction Transform methods Lévy families Asian options Approximating

Gaussian quadrature

ν is a finite positive measure on a closed bounded interval [a, b]

For each n we want to find a measure ν̃n on a finite number of
points in [a, b] such that we match the first 2n− 1 moments of ν,
i.e. ∫

[a,b]

xjν(dx) =

n∑
i

xjiwi, , for j = 1, . . . , 2n− 1.

The points xi and wi are the nodes and weights of the Gaussian
quadrature.
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Gaussian quadrature and orthogonal polynomials

{pn(x)}n≥0 be the sequence of orthogonal polynomials with
respect to the measure ν(dx): deg(pn) = n and

(pn, pm)ν :=

∫
[a,b]

pn(x)pm(x)ν(dx) = dnδn,m

The nodes of the Gaussian quadrature ν̃n are the zeros of pn and
the weights may be calculated from pn−1, pn (Szegö 1975).
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Lévy-Khintchine representation

The Lévy-Khintchine representation for ψ(z) is

ψ(z) =
σ2z2

2
+ az +

∫
R

(ezx − 1− zxI(|x| < 1)) Π(dx), z ∈ iR.
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Bernstein’s Theorem

We can develop a very useful description of the processes which
satisfy our assumption using Bernstein’s theorem. A process satisfies
our assumption if, and only if, there exists a positive measure µ(du),
with support in R\{0}, such that for all x ∈ R

π(x) = I(x > 0)

∫
(0,∞)

e−uxµ(du) + I(x < 0)

∫
(−∞,0)

e−uxµ(du), (1)

and µ(du) assigns no mass to a non-empty interval (−ρ̂, ρ) containing
the origin + integrability condition on µ(du).
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A change of variables

We define

µ∗(A) := µ({v ∈ R : v−1 ∈ A}).

Then, the Lévy-Khintchine formula + Fubini’s theorem + change of
variables give us

ψ(z) =
σ2

2
z2 + az + z2

∫
[−ρ̂−1,ρ−1]

|v|3µ∗(dv)

1− vz
.

Key Observation: |v|3µ∗(dv) is a finite measure, with bounded
support.
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Main theorem (two-sided case)

Assume that σ = 0. Let {xi}1≤i≤n and {wi}1≤i≤n be the nodes and
the weights of the Gaussian quadrature of order n with respect to the
measure |v|3µ∗(dv). We define

ψn(z) := az + z2
n∑
i=1

wi
1− zxi

.

Theorem

(i) The function ψn(z) is the [n+ 1/n] Padé approximant of ψ(z).

(ii) The function ψn(z) is the Laplace exponent of a hyperexponential
process X(n) having the characteristic triple (a, σ2

n, πn)h≡x, where

Analytical methods Daniel Hackmann 40/60
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Main theorem (two-sided case)

Theorem

(ii)

πn(x) :=


∑

1≤i≤n : xi<0

wi|xi|−3e−
x
xi , if x < 0,∑

1≤i≤n : xi>0

wix
−3
i e
− x
xi , if x > 0.

(iii) The random variables X
(n)
1 and X1 satisfy E[(X

(n)
1 )j ] = E[(X1)j ]

for 1 ≤ j ≤ 2n+ 1.
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Convergence

Theorem

For any compact set A ⊂ C \ {(−∞,−ρ̂] ∪ [ρ,∞)} there exist
c1 = c1(A) > 0 and c2 = c2(A) > 0 such that for all z ∈ A and all
n ≥ 1

|ψn(z)− ψ(z)| < c1e
−c2n.
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One-sided processes

For CM subordinators, all three functions ψ[n/n](z), ψ[n+1/n](z),
ψ[n+2/n](z) are Laplace exponents of hyperexponential processes.

For CM spectrally-positive processes of infinite variation, only
two functions ψ[n+1/n](z), ψ[n+2/n](z) are Laplace exponents of
hyperexponential processes.

There exist explicit formulas for a number of important examples:
In the VG case we have ψ[n/n](z) = Pn(z)/Qn(z), where

Pn(z) = 2

n∑
j=0

(
n

j

)2

[Hn−j −Hj ] (1− z)j , Qn(z) = znPn
(
2
z − 1

)
.

and Hj := 1 + 1/2 + · · ·+ 1/j.
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How do we prove all these results?

One can show that only ψ[n/n](z), ψ[n+1/n](z) and ψ[n+2/n](z)
can possibly be Laplace exponents of a Lévy process

The function

g(z) =

∫
[−ρ̂−1,ρ−1]

|v|3µ∗(dv)

1− vz
.

is closely related to a Stieltjes function:

f(z) :=

∫
[0,R−1]

ν(du)

1 + zu
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Some more theory on Stieltjes functions.

f [m/n](z) always exists provided m ≥ n− 1.

The poles of f [m/n](z) are simple, real and less than −R, and
have positive residues.

f [n−1/n](z) =
(−z)n−1qn−1(−1/z)

(−z)npn(−1/z)
=

n∑
i=1

wi
1 + xiz

.

Plus convergence results

(Baker and Graves-Morris 1996 & Allen et. al 1975)
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Math Finance applications

We will work with the following two processes: the VG process V
defined by the Laplace exponent

ψ(z) = µz − c log

(
1− z

ρ

)
− c log

(
1 +

z

ρ̂

)
,

and parameters

(ρ, ρ̂, c) = (21.8735, 56.4414, 5.0),

and the CGMY process Z defined by the Laplace exponent

ψ(z) = µz + CΓ(−Y )
[
(M − z)Y −MY + (G+ z)Y −GY

]
,

and parameters

(C,G,M, Y ) = (1, 8.8, 14.5, 1.2).
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European call

two-sided one-sided one-sided
[2N + 1/2N ] [N + 1/N ] [N + 2/N ]

N = 1 -2.75e-2 1.93e-2 -3.72e-3
N = 2 -4.86e-6 -4.19e-6 9.5e-5
N = 3 4.80e-7 -1.48e-5 -2.54e-7
N = 4 2.9e-8 6.41e-7 -1.55e-7
N = 5 1.14e-9 5.58e-9 6.95e-9

Table : The error in computing the price of the European call option for
the CGMY Z-model. Initial stock price is A0 = 100, strike price K = 100,
maturity T = 0.25 and interest rate r = 0.04. The benchmark price is
11.9207826467.
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Introduction Transform methods Lévy families Asian options Approximating

Down-and-out put

We calculate barrier option prices for the process V , for four values
A0 ∈ {81, 91, 101, 111} and with other parameters given by K = 100,
B = 80, r = 0.04879 and T = 0.5

A0 = 81 A0 = 91 A0 = 101 A0 = 111
Benchmark 3.39880 7.38668 1.40351 0.04280

N = 2 3.44551 7.39225 1.40527 0.04233
N = 4 3.40209 7.38957 1.40329 0.04258
N = 6 3.39910 7.38939 1.40332 0.04258
N = 8 3.39856 7.38936 1.40332 0.04258
N = 10 3.39853 7.38936 1.40332 0.04258

Table : Barrier option prices calculated for the VG process V -model.
Benchmark prices obtained from Kudryavtsev and Levendorskĭi 2009
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Proc. Lond. Math. Soc., 47(3):177–191, 1983.

S.E. Shreve.
Stochastic Calculus for Finance II.
Springer–Verlag, New York, 2004.

J. Vecer and M. Xu.
Pricing Asian options in a semimartingale model.
Quantitative Finance, 4(2):170–175, 2004.

Analytical methods Daniel Hackmann 53/60
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To approximate M(Ie(q), z) we can simply truncate our infinite
product, but convergence may be slow. The more terms we need, the
more roots −ζ̃n and ζn we need to calculate which is computationally
expensive. Note if we truncate the transform we get:

MN (z) := aN × bz−1N ×
N∏
n=1

Γ(ρ̂n−1 + z)

Γ(ζ̂n + z)

Γ(ζn + 1− z)
Γ(ρn + 1− z)

where and aN and bN are normalizing constants.

Analytical methods Daniel Hackmann 54/60
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Now we note that

M(Ie(q), z) =MN (z)RN (z)

where RN (z) =M(Ie(q), z)/MN (z) is the Mellin transform of the tail

of our product of beta random variables which we denote ε(N).
Instead of simply letting RN (z) = 1 we try to find a random variable
ξ matching the first two moments m1 and m2 of ε(N).
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We let ξ be a beta random variable of the second kind which has
density:

P(ξ ∈ dx) =
Γ(a)Γ(b)

Γ(a+ b)
ya−1(1 + y)−a−bdy, y > 0.

We choose a, b > 0 such E[ξ] = m1 and E[ξ2] = m2.
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Method 1: Using the approximation of M(Ie(q), z) with 10, 20, 40,
or 80 terms we calculate h(k, q) as the inverse Mellin transform

h(k, q) =
k−d1

2π

∫
R

M(d1 + iv + 2, q)

(d1 + iv)(d1 + iv + 1)
e− v ln(k)dv,

where d1 ∈ (0, ζ1 − 1). From here we calculate f(k, t) via the inverse
Laplace transform, which can be written as the cosine transform

f(k, t) =
2ed2t

π

∫
R+

Re

[
h(k, d2 + iu)

d2 + iu

]
cos(ut)du,

where d2 > r. We evaluate the oscillatory integrals via Filon’s method
with 400 discretization points using domain of integration
−100 < v < 100 and 0 < u < 200 respectively.
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Method 2: We approximate our process by a hyper-exponential
process. In particular we approximate the Laplace exponent by a
function having finite sums instead of infinite series.
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Method 3: Monte-Carlo simulation. We approximate the
theta-process X = {Xt}0≤t≤T by a random walk Z = {Zn}0≤n≤400
with Z0 = 0 and the increment Zn+1 − Zn

d
= XT/400. The price of the

Asian option is approximated then by the following expectation

e−rTE

( 1

400

400∑
n=1

A0e
Zn −K

)+
 ,

which we estimate by sampling 106 paths of the random walk.
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Method 3 (cont.): In order to sample from the distribution of
Y := Zn+1 − Zn, we compute its density pY (x) via the inverse Fourier
transform

pY (x) =
1

2π

∫
R

E
[
eizY

]
e−izxdz,

where E
[
eizY

]
= E

[
eizXT/400

]
= exp ((T/400)ψ(iz)). In order to

compute the inverse Fourier transform, we use Filon’s method with
106 discretization points.

Back to the presentation .
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